If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+40k=192
We move all terms to the left:
8k^2+40k-(192)=0
a = 8; b = 40; c = -192;
Δ = b2-4ac
Δ = 402-4·8·(-192)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-88}{2*8}=\frac{-128}{16} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+88}{2*8}=\frac{48}{16} =3 $
| 2/5h-18=14 | | |3w+21|=0 | | 4x2+2x–1=5(2)x | | 2x+3x+16=108 | | 4g-15=-15+4g | | 6x+10=-1 | | 5x-2(x+5)=0 | | 16t-13t-2t=9 | | 1.7r+7=1.4r+22 | | 14x+12=7x | | 3h-6h-20h-8h=-15 | | (2a2+7a−10)=(a−5) | | -20r+15r=20 | | 6x+218=16x-12 | | -1x/2=6 | | 3x8=3x8+24 | | 7m+35=180 | | 20-6y=-4 | | r-20/(-1)=0 | | 15=1x/3-2 | | 20r-13r-4r=12 | | 4z-6=78 | | z/9+2=−23 | | 13m+5m-17m+3m=20 | | 4z-6=180 | | 1x/6=11 | | (x-5)^2=12 | | 12k+k-10k+k-3k=7 | | 35y+78=180 | | 9-1x=-13 | | k/2+6=18 | | 3(r-2)+2r=19 |